|
|
function plantuml_imgsrc(data){ return 'https://www.plantuml.com/plantuml/svg/'+plantuml_encode(data); }
function plantuml_encode(data){ return plantuml_encode64(deflate(unescape(encodeURIComponent(data)))) }
function plantuml_encode64(data) { r = ''; for (i = 0; i < data.length; i += 3) { if (i + 2 == data.length) { r += plantuml_append3bytes(data.charCodeAt(i), data.charCodeAt(i + 1), 0); } else if (i + 1 == data.length) { r += plantuml_append3bytes(data.charCodeAt(i), 0, 0); } else { r += plantuml_append3bytes(data.charCodeAt(i), data.charCodeAt(i + 1), data.charCodeAt(i + 2)); } } return r; }
function plantuml_append3bytes(b1, b2, b3) { c1 = b1 >> 2; c2 = ((b1 & 0x3) << 4) | (b2 >> 4); c3 = ((b2 & 0xF) << 2) | (b3 >> 6); c4 = b3 & 0x3F; r = ''; r += plantuml_encode6bit(c1 & 0x3F); r += plantuml_encode6bit(c2 & 0x3F); r += plantuml_encode6bit(c3 & 0x3F); r += plantuml_encode6bit(c4 & 0x3F); return r; }
function plantuml_encode6bit(b) { if (b < 10) { return String.fromCharCode(48 + b); } b -= 10; if (b < 26) { return String.fromCharCode(65 + b); } b -= 26; if (b < 26) { return String.fromCharCode(97 + b); } b -= 26; if (b == 0) { return '-'; } if (b == 1) { return '_'; } return '?'; }
/* * $Id: rawdeflate.js,v 0.3 2009/03/01 19:05:05 dankogai Exp dankogai $ * * Original: * http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
*/
// if run as a web worker, respond to messages by deflating them
var deflate = (function() {
/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp> * Version: 1.0.1 * LastModified: Dec 25 1999 */
/* Interface: * data = deflate(src); */
/* constant parameters */ var zip_WSIZE = 32768; // Sliding Window size
var zip_STORED_BLOCK = 0; var zip_STATIC_TREES = 1; var zip_DYN_TREES = 2;
/* for deflate */ var zip_DEFAULT_LEVEL = 6; var zip_FULL_SEARCH = true; var zip_INBUFSIZ = 32768; // Input buffer size
var zip_INBUF_EXTRA = 64; // Extra buffer
var zip_OUTBUFSIZ = 1024 * 8; var zip_window_size = 2 * zip_WSIZE; var zip_MIN_MATCH = 3; var zip_MAX_MATCH = 258; var zip_BITS = 16; // for SMALL_MEM
var zip_LIT_BUFSIZE = 0x2000; var zip_HASH_BITS = 13; // for MEDIUM_MEM
// var zip_LIT_BUFSIZE = 0x4000;
// var zip_HASH_BITS = 14;
// for BIG_MEM
// var zip_LIT_BUFSIZE = 0x8000;
// var zip_HASH_BITS = 15;
//if(zip_LIT_BUFSIZE > zip_INBUFSIZ)
// alert("error: zip_INBUFSIZ is too small");
//if((zip_WSIZE<<1) > (1<<zip_BITS))
// alert("error: zip_WSIZE is too large");
//if(zip_HASH_BITS > zip_BITS-1)
// alert("error: zip_HASH_BITS is too large");
//if(zip_HASH_BITS < 8 || zip_MAX_MATCH != 258)
// alert("error: Code too clever");
var zip_DIST_BUFSIZE = zip_LIT_BUFSIZE; var zip_HASH_SIZE = 1 << zip_HASH_BITS; var zip_HASH_MASK = zip_HASH_SIZE - 1; var zip_WMASK = zip_WSIZE - 1; var zip_NIL = 0; // Tail of hash chains
var zip_TOO_FAR = 4096; var zip_MIN_LOOKAHEAD = zip_MAX_MATCH + zip_MIN_MATCH + 1; var zip_MAX_DIST = zip_WSIZE - zip_MIN_LOOKAHEAD; var zip_SMALLEST = 1; var zip_MAX_BITS = 15; var zip_MAX_BL_BITS = 7; var zip_LENGTH_CODES = 29; var zip_LITERALS =256; var zip_END_BLOCK = 256; var zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES; var zip_D_CODES = 30; var zip_BL_CODES = 19; var zip_REP_3_6 = 16; var zip_REPZ_3_10 = 17; var zip_REPZ_11_138 = 18; var zip_HEAP_SIZE = 2 * zip_L_CODES + 1; var zip_H_SHIFT = parseInt((zip_HASH_BITS + zip_MIN_MATCH - 1) / zip_MIN_MATCH);
/* variables */ var zip_free_queue; var zip_qhead, zip_qtail; var zip_initflag; var zip_outbuf = null; var zip_outcnt, zip_outoff; var zip_complete; var zip_window; var zip_d_buf; var zip_l_buf; var zip_prev; var zip_bi_buf; var zip_bi_valid; var zip_block_start; var zip_ins_h; var zip_hash_head; var zip_prev_match; var zip_match_available; var zip_match_length; var zip_prev_length; var zip_strstart; var zip_match_start; var zip_eofile; var zip_lookahead; var zip_max_chain_length; var zip_max_lazy_match; var zip_compr_level; var zip_good_match; var zip_nice_match; var zip_dyn_ltree; var zip_dyn_dtree; var zip_static_ltree; var zip_static_dtree; var zip_bl_tree; var zip_l_desc; var zip_d_desc; var zip_bl_desc; var zip_bl_count; var zip_heap; var zip_heap_len; var zip_heap_max; var zip_depth; var zip_length_code; var zip_dist_code; var zip_base_length; var zip_base_dist; var zip_flag_buf; var zip_last_lit; var zip_last_dist; var zip_last_flags; var zip_flags; var zip_flag_bit; var zip_opt_len; var zip_static_len; var zip_deflate_data; var zip_deflate_pos;
/* objects (deflate) */
function zip_DeflateCT() { this.fc = 0; // frequency count or bit string
this.dl = 0; // father node in Huffman tree or length of bit string
}
function zip_DeflateTreeDesc() { this.dyn_tree = null; // the dynamic tree
this.static_tree = null; // corresponding static tree or NULL
this.extra_bits = null; // extra bits for each code or NULL
this.extra_base = 0; // base index for extra_bits
this.elems = 0; // max number of elements in the tree
this.max_length = 0; // max bit length for the codes
this.max_code = 0; // largest code with non zero frequency
}
/* Values for max_lazy_match, good_match and max_chain_length, depending on * the desired pack level (0..9). The values given below have been tuned to * exclude worst case performance for pathological files. Better values may be * found for specific files. */ function zip_DeflateConfiguration(a, b, c, d) { this.good_length = a; // reduce lazy search above this match length
this.max_lazy = b; // do not perform lazy search above this match length
this.nice_length = c; // quit search above this match length
this.max_chain = d; }
function zip_DeflateBuffer() { this.next = null; this.len = 0; this.ptr = new Array(zip_OUTBUFSIZ); this.off = 0; }
/* constant tables */ var zip_extra_lbits = [ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0]; var zip_extra_dbits = [ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13]; var zip_extra_blbits = [ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7]; var zip_bl_order = [16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15]; var zip_configuration_table = [ new zip_DeflateConfiguration(0, 0, 0, 0), new zip_DeflateConfiguration(4, 4, 8, 4), new zip_DeflateConfiguration(4, 5, 16, 8), new zip_DeflateConfiguration(4, 6, 32, 32), new zip_DeflateConfiguration(4, 4, 16, 16), new zip_DeflateConfiguration(8, 16, 32, 32), new zip_DeflateConfiguration(8, 16, 128, 128), new zip_DeflateConfiguration(8, 32, 128, 256), new zip_DeflateConfiguration(32, 128, 258, 1024), new zip_DeflateConfiguration(32, 258, 258, 4096)];
/* routines (deflate) */
function zip_deflate_start(level) { var i;
if(!level) level = zip_DEFAULT_LEVEL; else if(level < 1) level = 1; else if(level > 9) level = 9;
zip_compr_level = level; zip_initflag = false; zip_eofile = false; if(zip_outbuf != null) return;
zip_free_queue = zip_qhead = zip_qtail = null; zip_outbuf = new Array(zip_OUTBUFSIZ); zip_window = new Array(zip_window_size); zip_d_buf = new Array(zip_DIST_BUFSIZE); zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA); zip_prev = new Array(1 << zip_BITS); zip_dyn_ltree = new Array(zip_HEAP_SIZE); for(i = 0; i < zip_HEAP_SIZE; i++) zip_dyn_ltree[i] = new zip_DeflateCT(); zip_dyn_dtree = new Array(2*zip_D_CODES+1); for(i = 0; i < 2*zip_D_CODES+1; i++) zip_dyn_dtree[i] = new zip_DeflateCT(); zip_static_ltree = new Array(zip_L_CODES+2); for(i = 0; i < zip_L_CODES+2; i++) zip_static_ltree[i] = new zip_DeflateCT(); zip_static_dtree = new Array(zip_D_CODES); for(i = 0; i < zip_D_CODES; i++) zip_static_dtree[i] = new zip_DeflateCT(); zip_bl_tree = new Array(2*zip_BL_CODES+1); for(i = 0; i < 2*zip_BL_CODES+1; i++) zip_bl_tree[i] = new zip_DeflateCT(); zip_l_desc = new zip_DeflateTreeDesc(); zip_d_desc = new zip_DeflateTreeDesc(); zip_bl_desc = new zip_DeflateTreeDesc(); zip_bl_count = new Array(zip_MAX_BITS+1); zip_heap = new Array(2*zip_L_CODES+1); zip_depth = new Array(2*zip_L_CODES+1); zip_length_code = new Array(zip_MAX_MATCH-zip_MIN_MATCH+1); zip_dist_code = new Array(512); zip_base_length = new Array(zip_LENGTH_CODES); zip_base_dist = new Array(zip_D_CODES); zip_flag_buf = new Array(parseInt(zip_LIT_BUFSIZE / 8)); }
function zip_deflate_end() { zip_free_queue = zip_qhead = zip_qtail = null; zip_outbuf = null; zip_window = null; zip_d_buf = null; zip_l_buf = null; zip_prev = null; zip_dyn_ltree = null; zip_dyn_dtree = null; zip_static_ltree = null; zip_static_dtree = null; zip_bl_tree = null; zip_l_desc = null; zip_d_desc = null; zip_bl_desc = null; zip_bl_count = null; zip_heap = null; zip_depth = null; zip_length_code = null; zip_dist_code = null; zip_base_length = null; zip_base_dist = null; zip_flag_buf = null; }
function zip_reuse_queue(p) { p.next = zip_free_queue; zip_free_queue = p; }
function zip_new_queue() { var p;
if(zip_free_queue != null) { p = zip_free_queue; zip_free_queue = zip_free_queue.next; } else p = new zip_DeflateBuffer(); p.next = null; p.len = p.off = 0;
return p; }
function zip_head1(i) { return zip_prev[zip_WSIZE + i]; }
function zip_head2(i, val) { return zip_prev[zip_WSIZE + i] = val; }
/* put_byte is used for the compressed output, put_ubyte for the * uncompressed output. However unlzw() uses window for its * suffix table instead of its output buffer, so it does not use put_ubyte * (to be cleaned up). */ function zip_put_byte(c) { zip_outbuf[zip_outoff + zip_outcnt++] = c; if(zip_outoff + zip_outcnt == zip_OUTBUFSIZ) zip_qoutbuf(); }
/* Output a 16 bit value, lsb first */ function zip_put_short(w) { w &= 0xffff; if(zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) { zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff); zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8); } else { zip_put_byte(w & 0xff); zip_put_byte(w >>> 8); } }
/* ========================================================================== * Insert string s in the dictionary and set match_head to the previous head * of the hash chain (the most recent string with same hash key). Return * the previous length of the hash chain. * IN assertion: all calls to to INSERT_STRING are made with consecutive * input characters and the first MIN_MATCH bytes of s are valid * (except for the last MIN_MATCH-1 bytes of the input file). */ function zip_INSERT_STRING() { zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[zip_strstart + zip_MIN_MATCH - 1] & 0xff)) & zip_HASH_MASK; zip_hash_head = zip_head1(zip_ins_h); zip_prev[zip_strstart & zip_WMASK] = zip_hash_head; zip_head2(zip_ins_h, zip_strstart); }
/* Send a code of the given tree. c and tree must not have side effects */ function zip_SEND_CODE(c, tree) { zip_send_bits(tree[c].fc, tree[c].dl); }
/* Mapping from a distance to a distance code. dist is the distance - 1 and * must not have side effects. dist_code[256] and dist_code[257] are never * used. */ function zip_D_CODE(dist) { return (dist < 256 ? zip_dist_code[dist] : zip_dist_code[256 + (dist>>7)]) & 0xff; }
/* ========================================================================== * Compares to subtrees, using the tree depth as tie breaker when * the subtrees have equal frequency. This minimizes the worst case length. */ function zip_SMALLER(tree, n, m) { return tree[n].fc < tree[m].fc || (tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]); }
/* ========================================================================== * read string data */ function zip_read_buff(buff, offset, n) { var i; for(i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++) buff[offset + i] = zip_deflate_data.charCodeAt(zip_deflate_pos++) & 0xff; return i; }
/* ========================================================================== * Initialize the "longest match" routines for a new file */ function zip_lm_init() { var j;
/* Initialize the hash table. */ for(j = 0; j < zip_HASH_SIZE; j++) // zip_head2(j, zip_NIL);
zip_prev[zip_WSIZE + j] = 0; /* prev will be initialized on the fly */
/* Set the default configuration parameters: */ zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy; zip_good_match = zip_configuration_table[zip_compr_level].good_length; if(!zip_FULL_SEARCH) zip_nice_match = zip_configuration_table[zip_compr_level].nice_length; zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain;
zip_strstart = 0; zip_block_start = 0;
zip_lookahead = zip_read_buff(zip_window, 0, 2 * zip_WSIZE); if(zip_lookahead <= 0) { zip_eofile = true; zip_lookahead = 0; return; } zip_eofile = false; /* Make sure that we always have enough lookahead. This is important * if input comes from a device such as a tty. */ while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) zip_fill_window();
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is * not important since only literal bytes will be emitted. */ zip_ins_h = 0; for(j = 0; j < zip_MIN_MATCH - 1; j++) { // UPDATE_HASH(ins_h, window[j]);
zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK; } }
/* ========================================================================== * Set match_start to the longest match starting at the given string and * return its length. Matches shorter or equal to prev_length are discarded, * in which case the result is equal to prev_length and match_start is * garbage. * IN assertions: cur_match is the head of the hash chain for the current * string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1 */ function zip_longest_match(cur_match) { var chain_length = zip_max_chain_length; // max hash chain length
var scanp = zip_strstart; // current string
var matchp; // matched string
var len; // length of current match
var best_len = zip_prev_length; // best match length so far
/* Stop when cur_match becomes <= limit. To simplify the code, * we prevent matches with the string of window index 0. */ var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL);
var strendp = zip_strstart + zip_MAX_MATCH; var scan_end1 = zip_window[scanp + best_len - 1]; var scan_end = zip_window[scanp + best_len];
/* Do not waste too much time if we already have a good match: */ if(zip_prev_length >= zip_good_match) chain_length >>= 2;
// Assert(encoder->strstart <= window_size-MIN_LOOKAHEAD, "insufficient lookahead");
do { // Assert(cur_match < encoder->strstart, "no future");
matchp = cur_match;
/* Skip to next match if the match length cannot increase * or if the match length is less than 2: */ if(zip_window[matchp + best_len] != scan_end || zip_window[matchp + best_len - 1] != scan_end1 || zip_window[matchp] != zip_window[scanp] || zip_window[++matchp] != zip_window[scanp + 1]) { continue; }
/* The check at best_len-1 can be removed because it will be made * again later. (This heuristic is not always a win.) * It is not necessary to compare scan[2] and match[2] since they * are always equal when the other bytes match, given that * the hash keys are equal and that HASH_BITS >= 8. */ scanp += 2; matchp++;
/* We check for insufficient lookahead only every 8th comparison; * the 256th check will be made at strstart+258. */ do { } while(zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && zip_window[++scanp] == zip_window[++matchp] && scanp < strendp);
len = zip_MAX_MATCH - (strendp - scanp); scanp = strendp - zip_MAX_MATCH;
if(len > best_len) { zip_match_start = cur_match; best_len = len; if(zip_FULL_SEARCH) { if(len >= zip_MAX_MATCH) break; } else { if(len >= zip_nice_match) break; }
scan_end1 = zip_window[scanp + best_len-1]; scan_end = zip_window[scanp + best_len]; } } while((cur_match = zip_prev[cur_match & zip_WMASK]) > limit && --chain_length != 0);
return best_len; }
/* ========================================================================== * Fill the window when the lookahead becomes insufficient. * Updates strstart and lookahead, and sets eofile if end of input file. * IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0 * OUT assertions: at least one byte has been read, or eofile is set; * file reads are performed for at least two bytes (required for the * translate_eol option). */ function zip_fill_window() { var n, m;
// Amount of free space at the end of the window.
var more = zip_window_size - zip_lookahead - zip_strstart;
/* If the window is almost full and there is insufficient lookahead, * move the upper half to the lower one to make room in the upper half. */ if(more == -1) { /* Very unlikely, but possible on 16 bit machine if strstart == 0 * and lookahead == 1 (input done one byte at time) */ more--; } else if(zip_strstart >= zip_WSIZE + zip_MAX_DIST) { /* By the IN assertion, the window is not empty so we can't confuse * more == 0 with more == 64K on a 16 bit machine. */ // Assert(window_size == (ulg)2*WSIZE, "no sliding with BIG_MEM");
// System.arraycopy(window, WSIZE, window, 0, WSIZE);
for(n = 0; n < zip_WSIZE; n++) zip_window[n] = zip_window[n + zip_WSIZE];
zip_match_start -= zip_WSIZE; zip_strstart -= zip_WSIZE; /* we now have strstart >= MAX_DIST: */ zip_block_start -= zip_WSIZE;
for(n = 0; n < zip_HASH_SIZE; n++) { m = zip_head1(n); zip_head2(n, m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); } for(n = 0; n < zip_WSIZE; n++) { /* If n is not on any hash chain, prev[n] is garbage but * its value will never be used. */ m = zip_prev[n]; zip_prev[n] = (m >= zip_WSIZE ? m - zip_WSIZE : zip_NIL); } more += zip_WSIZE; } // At this point, more >= 2
if(!zip_eofile) { n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more); if(n <= 0) zip_eofile = true; else zip_lookahead += n; } }
/* ========================================================================== * Processes a new input file and return its compressed length. This * function does not perform lazy evaluationof matches and inserts * new strings in the dictionary only for unmatched strings or for short * matches. It is used only for the fast compression options. */ function zip_deflate_fast() { while(zip_lookahead != 0 && zip_qhead == null) { var flush; // set if current block must be flushed
/* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ zip_INSERT_STRING();
/* Find the longest match, discarding those <= prev_length. * At this point we have always match_length < MIN_MATCH */ if(zip_hash_head != zip_NIL && zip_strstart - zip_hash_head <= zip_MAX_DIST) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ zip_match_length = zip_longest_match(zip_hash_head); /* longest_match() sets match_start */ if(zip_match_length > zip_lookahead) zip_match_length = zip_lookahead; } if(zip_match_length >= zip_MIN_MATCH) { // check_match(strstart, match_start, match_length);
flush = zip_ct_tally(zip_strstart - zip_match_start, zip_match_length - zip_MIN_MATCH); zip_lookahead -= zip_match_length;
/* Insert new strings in the hash table only if the match length * is not too large. This saves time but degrades compression. */ if(zip_match_length <= zip_max_lazy_match) { zip_match_length--; // string at strstart already in hash table
do { zip_strstart++; zip_INSERT_STRING(); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH * these bytes are garbage, but it does not matter since * the next lookahead bytes will be emitted as literals. */ } while(--zip_match_length != 0); zip_strstart++; } else { zip_strstart += zip_match_length; zip_match_length = 0; zip_ins_h = zip_window[zip_strstart] & 0xff; // UPDATE_HASH(ins_h, window[strstart + 1]);
zip_ins_h = ((zip_ins_h<<zip_H_SHIFT) ^ (zip_window[zip_strstart + 1] & 0xff)) & zip_HASH_MASK;
//#if MIN_MATCH != 3
// Call UPDATE_HASH() MIN_MATCH-3 more times
//#endif
} } else { /* No match, output a literal byte */ flush = zip_ct_tally(0, zip_window[zip_strstart] & 0xff); zip_lookahead--; zip_strstart++; } if(flush) { zip_flush_block(0); zip_block_start = zip_strstart; }
/* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) zip_fill_window(); } }
function zip_deflate_better() { /* Process the input block. */ while(zip_lookahead != 0 && zip_qhead == null) { /* Insert the string window[strstart .. strstart+2] in the * dictionary, and set hash_head to the head of the hash chain: */ zip_INSERT_STRING();
/* Find the longest match, discarding those <= prev_length. */ zip_prev_length = zip_match_length; zip_prev_match = zip_match_start; zip_match_length = zip_MIN_MATCH - 1;
if(zip_hash_head != zip_NIL && zip_prev_length < zip_max_lazy_match && zip_strstart - zip_hash_head <= zip_MAX_DIST) { /* To simplify the code, we prevent matches with the string * of window index 0 (in particular we have to avoid a match * of the string with itself at the start of the input file). */ zip_match_length = zip_longest_match(zip_hash_head); /* longest_match() sets match_start */ if(zip_match_length > zip_lookahead) zip_match_length = zip_lookahead;
/* Ignore a length 3 match if it is too distant: */ if(zip_match_length == zip_MIN_MATCH && zip_strstart - zip_match_start > zip_TOO_FAR) { /* If prev_match is also MIN_MATCH, match_start is garbage * but we will ignore the current match anyway. */ zip_match_length--; } } /* If there was a match at the previous step and the current * match is not better, output the previous match: */ if(zip_prev_length >= zip_MIN_MATCH && zip_match_length <= zip_prev_length) { var flush; // set if current block must be flushed
// check_match(strstart - 1, prev_match, prev_length);
flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match, zip_prev_length - zip_MIN_MATCH);
/* Insert in hash table all strings up to the end of the match. * strstart-1 and strstart are already inserted. */ zip_lookahead -= zip_prev_length - 1; zip_prev_length -= 2; do { zip_strstart++; zip_INSERT_STRING(); /* strstart never exceeds WSIZE-MAX_MATCH, so there are * always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH * these bytes are garbage, but it does not matter since the * next lookahead bytes will always be emitted as literals. */ } while(--zip_prev_length != 0); zip_match_available = 0; zip_match_length = zip_MIN_MATCH - 1; zip_strstart++; if(flush) { zip_flush_block(0); zip_block_start = zip_strstart; } } else if(zip_match_available != 0) { /* If there was no match at the previous position, output a * single literal. If there was a match but the current match * is longer, truncate the previous match to a single literal. */ if(zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) { zip_flush_block(0); zip_block_start = zip_strstart; } zip_strstart++; zip_lookahead--; } else { /* There is no previous match to compare with, wait for * the next step to decide. */ zip_match_available = 1; zip_strstart++; zip_lookahead--; }
/* Make sure that we always have enough lookahead, except * at the end of the input file. We need MAX_MATCH bytes * for the next match, plus MIN_MATCH bytes to insert the * string following the next match. */ while(zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile) zip_fill_window(); } }
function zip_init_deflate() { if(zip_eofile) return; zip_bi_buf = 0; zip_bi_valid = 0; zip_ct_init(); zip_lm_init();
zip_qhead = null; zip_outcnt = 0; zip_outoff = 0;
if(zip_compr_level <= 3) { zip_prev_length = zip_MIN_MATCH - 1; zip_match_length = 0; } else { zip_match_length = zip_MIN_MATCH - 1; zip_match_available = 0; }
zip_complete = false; }
/* ========================================================================== * Same as above, but achieves better compression. We use a lazy * evaluation for matches: a match is finally adopted only if there is * no better match at the next window position. */ function zip_deflate_internal(buff, off, buff_size) { var n;
if(!zip_initflag) { zip_init_deflate(); zip_initflag = true; if(zip_lookahead == 0) { // empty
zip_complete = true; return 0; } }
if((n = zip_qcopy(buff, off, buff_size)) == buff_size) return buff_size;
if(zip_complete) return n;
if(zip_compr_level <= 3) // optimized for speed
zip_deflate_fast(); else zip_deflate_better(); if(zip_lookahead == 0) { if(zip_match_available != 0) zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff); zip_flush_block(1); zip_complete = true; } return n + zip_qcopy(buff, n + off, buff_size - n); }
function zip_qcopy(buff, off, buff_size) { var n, i, j;
n = 0; while(zip_qhead != null && n < buff_size) { i = buff_size - n; if(i > zip_qhead.len) i = zip_qhead.len; // System.arraycopy(qhead.ptr, qhead.off, buff, off + n, i);
for(j = 0; j < i; j++) buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j];
zip_qhead.off += i; zip_qhead.len -= i; n += i; if(zip_qhead.len == 0) { var p; p = zip_qhead; zip_qhead = zip_qhead.next; zip_reuse_queue(p); } }
if(n == buff_size) return n;
if(zip_outoff < zip_outcnt) { i = buff_size - n; if(i > zip_outcnt - zip_outoff) i = zip_outcnt - zip_outoff; // System.arraycopy(outbuf, outoff, buff, off + n, i);
for(j = 0; j < i; j++) buff[off + n + j] = zip_outbuf[zip_outoff + j]; zip_outoff += i; n += i; if(zip_outcnt == zip_outoff) zip_outcnt = zip_outoff = 0; } return n; }
/* ========================================================================== * Allocate the match buffer, initialize the various tables and save the * location of the internal file attribute (ascii/binary) and method * (DEFLATE/STORE). */ function zip_ct_init() { var n; // iterates over tree elements
var bits; // bit counter
var length; // length value
var code; // code value
var dist; // distance index
if(zip_static_dtree[0].dl != 0) return; // ct_init already called
zip_l_desc.dyn_tree = zip_dyn_ltree; zip_l_desc.static_tree = zip_static_ltree; zip_l_desc.extra_bits = zip_extra_lbits; zip_l_desc.extra_base = zip_LITERALS + 1; zip_l_desc.elems = zip_L_CODES; zip_l_desc.max_length = zip_MAX_BITS; zip_l_desc.max_code = 0;
zip_d_desc.dyn_tree = zip_dyn_dtree; zip_d_desc.static_tree = zip_static_dtree; zip_d_desc.extra_bits = zip_extra_dbits; zip_d_desc.extra_base = 0; zip_d_desc.elems = zip_D_CODES; zip_d_desc.max_length = zip_MAX_BITS; zip_d_desc.max_code = 0;
zip_bl_desc.dyn_tree = zip_bl_tree; zip_bl_desc.static_tree = null; zip_bl_desc.extra_bits = zip_extra_blbits; zip_bl_desc.extra_base = 0; zip_bl_desc.elems = zip_BL_CODES; zip_bl_desc.max_length = zip_MAX_BL_BITS; zip_bl_desc.max_code = 0;
// Initialize the mapping length (0..255) -> length code (0..28)
length = 0; for(code = 0; code < zip_LENGTH_CODES-1; code++) { zip_base_length[code] = length; for(n = 0; n < (1<<zip_extra_lbits[code]); n++) zip_length_code[length++] = code; } // Assert (length == 256, "ct_init: length != 256");
/* Note that the length 255 (match length 258) can be represented * in two different ways: code 284 + 5 bits or code 285, so we * overwrite length_code[255] to use the best encoding: */ zip_length_code[length-1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */ dist = 0; for(code = 0 ; code < 16; code++) { zip_base_dist[code] = dist; for(n = 0; n < (1<<zip_extra_dbits[code]); n++) { zip_dist_code[dist++] = code; } } // Assert (dist == 256, "ct_init: dist != 256");
dist >>= 7; // from now on, all distances are divided by 128
for( ; code < zip_D_CODES; code++) { zip_base_dist[code] = dist << 7; for(n = 0; n < (1<<(zip_extra_dbits[code]-7)); n++) zip_dist_code[256 + dist++] = code; } // Assert (dist == 256, "ct_init: 256+dist != 512");
// Construct the codes of the static literal tree
for(bits = 0; bits <= zip_MAX_BITS; bits++) zip_bl_count[bits] = 0; n = 0; while(n <= 143) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } while(n <= 255) { zip_static_ltree[n++].dl = 9; zip_bl_count[9]++; } while(n <= 279) { zip_static_ltree[n++].dl = 7; zip_bl_count[7]++; } while(n <= 287) { zip_static_ltree[n++].dl = 8; zip_bl_count[8]++; } /* Codes 286 and 287 do not exist, but we must include them in the * tree construction to get a canonical Huffman tree (longest code * all ones) */ zip_gen_codes(zip_static_ltree, zip_L_CODES + 1);
/* The static distance tree is trivial: */ for(n = 0; n < zip_D_CODES; n++) { zip_static_dtree[n].dl = 5; zip_static_dtree[n].fc = zip_bi_reverse(n, 5); }
// Initialize the first block of the first file:
zip_init_block(); }
/* ========================================================================== * Initialize a new block. */ function zip_init_block() { var n; // iterates over tree elements
// Initialize the trees.
for(n = 0; n < zip_L_CODES; n++) zip_dyn_ltree[n].fc = 0; for(n = 0; n < zip_D_CODES; n++) zip_dyn_dtree[n].fc = 0; for(n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0;
zip_dyn_ltree[zip_END_BLOCK].fc = 1; zip_opt_len = zip_static_len = 0; zip_last_lit = zip_last_dist = zip_last_flags = 0; zip_flags = 0; zip_flag_bit = 1; }
/* ========================================================================== * Restore the heap property by moving down the tree starting at node k, * exchanging a node with the smallest of its two sons if necessary, stopping * when the heap property is re-established (each father smaller than its * two sons). */ function zip_pqdownheap( tree, // the tree to restore
k) { // node to move down
var v = zip_heap[k]; var j = k << 1; // left son of k
while(j <= zip_heap_len) { // Set j to the smallest of the two sons:
if(j < zip_heap_len && zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j])) j++;
// Exit if v is smaller than both sons
if(zip_SMALLER(tree, v, zip_heap[j])) break;
// Exchange v with the smallest son
zip_heap[k] = zip_heap[j]; k = j;
// And continue down the tree, setting j to the left son of k
j <<= 1; } zip_heap[k] = v; }
/* ========================================================================== * Compute the optimal bit lengths for a tree and update the total bit length * for the current block. * IN assertion: the fields freq and dad are set, heap[heap_max] and * above are the tree nodes sorted by increasing frequency. * OUT assertions: the field len is set to the optimal bit length, the * array bl_count contains the frequencies for each bit length. * The length opt_len is updated; static_len is also updated if stree is * not null. */ function zip_gen_bitlen(desc) { // the tree descriptor
var tree = desc.dyn_tree; var extra = desc.extra_bits; var base = desc.extra_base; var max_code = desc.max_code; var max_length = desc.max_length; var stree = desc.static_tree; var h; // heap index
var n, m; // iterate over the tree elements
var bits; // bit length
var xbits; // extra bits
var f; // frequency
var overflow = 0; // number of elements with bit length too large
for(bits = 0; bits <= zip_MAX_BITS; bits++) zip_bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may * overflow in the case of the bit length tree). */ tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap
for(h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) { n = zip_heap[h]; bits = tree[tree[n].dl].dl + 1; if(bits > max_length) { bits = max_length; overflow++; } tree[n].dl = bits; // We overwrite tree[n].dl which is no longer needed
if(n > max_code) continue; // not a leaf node
zip_bl_count[bits]++; xbits = 0; if(n >= base) xbits = extra[n - base]; f = tree[n].fc; zip_opt_len += f * (bits + xbits); if(stree != null) zip_static_len += f * (stree[n].dl + xbits); } if(overflow == 0) return;
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do { bits = max_length - 1; while(zip_bl_count[bits] == 0) bits--; zip_bl_count[bits]--; // move one leaf down the tree
zip_bl_count[bits + 1] += 2; // move one overflow item as its brother
zip_bl_count[max_length]--; /* The brother of the overflow item also moves one step up, * but this does not affect bl_count[max_length] */ overflow -= 2; } while(overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency. * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all * lengths instead of fixing only the wrong ones. This idea is taken * from 'ar' written by Haruhiko Okumura.) */ for(bits = max_length; bits != 0; bits--) { n = zip_bl_count[bits]; while(n != 0) { m = zip_heap[--h]; if(m > max_code) continue; if(tree[m].dl != bits) { zip_opt_len += (bits - tree[m].dl) * tree[m].fc; tree[m].fc = bits; } n--; } } }
/* ========================================================================== * Generate the codes for a given tree and bit counts (which need not be * optimal). * IN assertion: the array bl_count contains the bit length statistics for * the given tree and the field len is set for all tree elements. * OUT assertion: the field code is set for all tree elements of non * zero code length. */ function zip_gen_codes(tree, // the tree to decorate
max_code) { // largest code with non zero frequency
var next_code = new Array(zip_MAX_BITS+1); // next code value for each bit length
var code = 0; // running code value
var bits; // bit index
var n; // code index
/* The distribution counts are first used to generate the code values * without bit reversal. */ for(bits = 1; bits <= zip_MAX_BITS; bits++) { code = ((code + zip_bl_count[bits-1]) << 1); next_code[bits] = code; }
/* Check that the bit counts in bl_count are consistent. The last code * must be all ones. */ // Assert (code + encoder->bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
// "inconsistent bit counts");
// Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
for(n = 0; n <= max_code; n++) { var len = tree[n].dl; if(len == 0) continue; // Now reverse the bits
tree[n].fc = zip_bi_reverse(next_code[len]++, len);
// Tracec(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
// n, (isgraph(n) ? n : ' '), len, tree[n].fc, next_code[len]-1));
} }
/* ========================================================================== * Construct one Huffman tree and assigns the code bit strings and lengths. * Update the total bit length for the current block. * IN assertion: the field freq is set for all tree elements. * OUT assertions: the fields len and code are set to the optimal bit length * and corresponding code. The length opt_len is updated; static_len is * also updated if stree is not null. The field max_code is set. */ function zip_build_tree(desc) { // the tree descriptor
var tree = desc.dyn_tree; var stree = desc.static_tree; var elems = desc.elems; var n, m; // iterate over heap elements
var max_code = -1; // largest code with non zero frequency
var node = elems; // next internal node of the tree
/* Construct the initial heap, with least frequent element in * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1]. * heap[0] is not used. */ zip_heap_len = 0; zip_heap_max = zip_HEAP_SIZE;
for(n = 0; n < elems; n++) { if(tree[n].fc != 0) { zip_heap[++zip_heap_len] = max_code = n; zip_depth[n] = 0; } else tree[n].dl = 0; }
/* The pkzip format requires that at least one distance code exists, * and that at least one bit should be sent even if there is only one * possible code. So to avoid special checks later on we force at least * two codes of non zero frequency. */ while(zip_heap_len < 2) { var xnew = zip_heap[++zip_heap_len] = (max_code < 2 ? ++max_code : 0); tree[xnew].fc = 1; zip_depth[xnew] = 0; zip_opt_len--; if(stree != null) zip_static_len -= stree[xnew].dl; // new is 0 or 1 so it does not have extra bits
} desc.max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree, * establish sub-heaps of increasing lengths: */ for(n = zip_heap_len >> 1; n >= 1; n--) zip_pqdownheap(tree, n);
/* Construct the Huffman tree by repeatedly combining the least two * frequent nodes. */ do { n = zip_heap[zip_SMALLEST]; zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--]; zip_pqdownheap(tree, zip_SMALLEST);
m = zip_heap[zip_SMALLEST]; // m = node of next least frequency
// keep the nodes sorted by frequency
zip_heap[--zip_heap_max] = n; zip_heap[--zip_heap_max] = m;
// Create a new node father of n and m
tree[node].fc = tree[n].fc + tree[m].fc; // depth[node] = (char)(MAX(depth[n], depth[m]) + 1);
if(zip_depth[n] > zip_depth[m] + 1) zip_depth[node] = zip_depth[n]; else zip_depth[node] = zip_depth[m] + 1; tree[n].dl = tree[m].dl = node;
// and insert the new node in the heap
zip_heap[zip_SMALLEST] = node++; zip_pqdownheap(tree, zip_SMALLEST);
} while(zip_heap_len >= 2);
zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST];
/* At this point, the fields freq and dad are set. We can now * generate the bit lengths. */ zip_gen_bitlen(desc);
// The field len is now set, we can generate the bit codes
zip_gen_codes(tree, max_code); }
/* ========================================================================== * Scan a literal or distance tree to determine the frequencies of the codes * in the bit length tree. Updates opt_len to take into account the repeat * counts. (The contribution of the bit length codes will be added later * during the construction of bl_tree.) */ function zip_scan_tree(tree,// the tree to be scanned
max_code) { // and its largest code of non zero frequency
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0].dl; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
if(nextlen == 0) { max_count = 138; min_count = 3; } tree[max_code + 1].dl = 0xffff; // guard
for(n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n + 1].dl; if(++count < max_count && curlen == nextlen) continue; else if(count < min_count) zip_bl_tree[curlen].fc += count; else if(curlen != 0) { if(curlen != prevlen) zip_bl_tree[curlen].fc++; zip_bl_tree[zip_REP_3_6].fc++; } else if(count <= 10) zip_bl_tree[zip_REPZ_3_10].fc++; else zip_bl_tree[zip_REPZ_11_138].fc++; count = 0; prevlen = curlen; if(nextlen == 0) { max_count = 138; min_count = 3; } else if(curlen == nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } }
/* ========================================================================== * Send a literal or distance tree in compressed form, using the codes in * bl_tree. */ function zip_send_tree(tree, // the tree to be scanned
max_code) { // and its largest code of non zero frequency
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0].dl; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
/* tree[max_code+1].dl = -1; */ /* guard already set */ if(nextlen == 0) { max_count = 138; min_count = 3; }
for(n = 0; n <= max_code; n++) { curlen = nextlen; nextlen = tree[n+1].dl; if(++count < max_count && curlen == nextlen) { continue; } else if(count < min_count) { do { zip_SEND_CODE(curlen, zip_bl_tree); } while(--count != 0); } else if(curlen != 0) { if(curlen != prevlen) { zip_SEND_CODE(curlen, zip_bl_tree); count--; } // Assert(count >= 3 && count <= 6, " 3_6?");
zip_SEND_CODE(zip_REP_3_6, zip_bl_tree); zip_send_bits(count - 3, 2); } else if(count <= 10) { zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree); zip_send_bits(count-3, 3); } else { zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree); zip_send_bits(count-11, 7); } count = 0; prevlen = curlen; if(nextlen == 0) { max_count = 138; min_count = 3; } else if(curlen == nextlen) { max_count = 6; min_count = 3; } else { max_count = 7; min_count = 4; } } }
/* ========================================================================== * Construct the Huffman tree for the bit lengths and return the index in * bl_order of the last bit length code to send. */ function zip_build_bl_tree() { var max_blindex; // index of last bit length code of non zero freq
// Determine the bit length frequencies for literal and distance trees
zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code); zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code);
// Build the bit length tree:
zip_build_tree(zip_bl_desc); /* opt_len now includes the length of the tree representations, except * the lengths of the bit lengths codes and the 5+5+4 bits for the counts. */
/* Determine the number of bit length codes to send. The pkzip format * requires that at least 4 bit length codes be sent. (appnote.txt says * 3 but the actual value used is 4.) */ for(max_blindex = zip_BL_CODES-1; max_blindex >= 3; max_blindex--) { if(zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break; } /* Update opt_len to include the bit length tree and counts */ zip_opt_len += 3*(max_blindex+1) + 5+5+4; // Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
// encoder->opt_len, encoder->static_len));
return max_blindex; }
/* ========================================================================== * Send the header for a block using dynamic Huffman trees: the counts, the * lengths of the bit length codes, the literal tree and the distance tree. * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4. */ function zip_send_all_trees(lcodes, dcodes, blcodes) { // number of codes for each tree
var rank; // index in bl_order
// Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
// Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
// "too many codes");
// Tracev((stderr, "\nbl counts: "));
zip_send_bits(lcodes-257, 5); // not +255 as stated in appnote.txt
zip_send_bits(dcodes-1, 5); zip_send_bits(blcodes-4, 4); // not -3 as stated in appnote.txt
for(rank = 0; rank < blcodes; rank++) { // Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3); }
// send the literal tree
zip_send_tree(zip_dyn_ltree,lcodes-1);
// send the distance tree
zip_send_tree(zip_dyn_dtree,dcodes-1); }
/* ========================================================================== * Determine the best encoding for the current block: dynamic trees, static * trees or store, and output the encoded block to the zip file. */ function zip_flush_block(eof) { // true if this is the last block for a file
var opt_lenb, static_lenb; // opt_len and static_len in bytes
var max_blindex; // index of last bit length code of non zero freq
var stored_len; // length of input block
stored_len = zip_strstart - zip_block_start; zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items
// Construct the literal and distance trees
zip_build_tree(zip_l_desc); // Tracev((stderr, "\nlit data: dyn %ld, stat %ld",
// encoder->opt_len, encoder->static_len));
zip_build_tree(zip_d_desc); // Tracev((stderr, "\ndist data: dyn %ld, stat %ld",
// encoder->opt_len, encoder->static_len));
/* At this point, opt_len and static_len are the total bit lengths of * the compressed block data, excluding the tree representations. */
/* Build the bit length tree for the above two trees, and get the index * in bl_order of the last bit length code to send. */ max_blindex = zip_build_bl_tree();
// Determine the best encoding. Compute first the block length in bytes
opt_lenb = (zip_opt_len +3+7)>>3; static_lenb = (zip_static_len+3+7)>>3;
// Trace((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u dist %u ",
// opt_lenb, encoder->opt_len,
// static_lenb, encoder->static_len, stored_len,
// encoder->last_lit, encoder->last_dist));
if(static_lenb <= opt_lenb) opt_lenb = static_lenb; if(stored_len + 4 <= opt_lenb // 4: two words for the lengths
&& zip_block_start >= 0) { var i;
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE. * Otherwise we can't have processed more than WSIZE input bytes since * the last block flush, because compression would have been * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to * transform a block into a stored block. */ zip_send_bits((zip_STORED_BLOCK<<1)+eof, 3); /* send block type */ zip_bi_windup(); /* align on byte boundary */ zip_put_short(stored_len); zip_put_short(~stored_len);
// copy block
/* p = &window[block_start]; for(i = 0; i < stored_len; i++) put_byte(p[i]); */ for(i = 0; i < stored_len; i++) zip_put_byte(zip_window[zip_block_start + i]);
} else if(static_lenb == opt_lenb) { zip_send_bits((zip_STATIC_TREES<<1)+eof, 3); zip_compress_block(zip_static_ltree, zip_static_dtree); } else { zip_send_bits((zip_DYN_TREES<<1)+eof, 3); zip_send_all_trees(zip_l_desc.max_code+1, zip_d_desc.max_code+1, max_blindex+1); zip_compress_block(zip_dyn_ltree, zip_dyn_dtree); }
zip_init_block();
if(eof != 0) zip_bi_windup(); }
/* ========================================================================== * Save the match info and tally the frequency counts. Return true if * the current block must be flushed. */ function zip_ct_tally( dist, // distance of matched string
lc) { // match length-MIN_MATCH or unmatched char (if dist==0)
zip_l_buf[zip_last_lit++] = lc; if(dist == 0) { // lc is the unmatched char
zip_dyn_ltree[lc].fc++; } else { // Here, lc is the match length - MIN_MATCH
dist--; // dist = match distance - 1
// Assert((ush)dist < (ush)MAX_DIST &&
// (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
// (ush)D_CODE(dist) < (ush)D_CODES, "ct_tally: bad match");
zip_dyn_ltree[zip_length_code[lc]+zip_LITERALS+1].fc++; zip_dyn_dtree[zip_D_CODE(dist)].fc++;
zip_d_buf[zip_last_dist++] = dist; zip_flags |= zip_flag_bit; } zip_flag_bit <<= 1;
// Output the flags if they fill a byte
if((zip_last_lit & 7) == 0) { zip_flag_buf[zip_last_flags++] = zip_flags; zip_flags = 0; zip_flag_bit = 1; } // Try to guess if it is profitable to stop the current block here
if(zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) { // Compute an upper bound for the compressed length
var out_length = zip_last_lit * 8; var in_length = zip_strstart - zip_block_start; var dcode;
for(dcode = 0; dcode < zip_D_CODES; dcode++) { out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]); } out_length >>= 3; // Trace((stderr,"\nlast_lit %u, last_dist %u, in %ld, out ~%ld(%ld%%) ",
// encoder->last_lit, encoder->last_dist, in_length, out_length,
// 100L - out_length*100L/in_length));
if(zip_last_dist < parseInt(zip_last_lit/2) && out_length < parseInt(in_length/2)) return true; } return (zip_last_lit == zip_LIT_BUFSIZE-1 || zip_last_dist == zip_DIST_BUFSIZE); /* We avoid equality with LIT_BUFSIZE because of wraparound at 64K * on 16 bit machines and because stored blocks are restricted to * 64K-1 bytes. */ }
/* ========================================================================== * Send the block data compressed using the given Huffman trees */ function zip_compress_block( ltree, // literal tree
dtree) { // distance tree
var dist; // distance of matched string
var lc; // match length or unmatched char (if dist == 0)
var lx = 0; // running index in l_buf
var dx = 0; // running index in d_buf
var fx = 0; // running index in flag_buf
var flag = 0; // current flags
var code; // the code to send
var extra; // number of extra bits to send
if(zip_last_lit != 0) do { if((lx & 7) == 0) flag = zip_flag_buf[fx++]; lc = zip_l_buf[lx++] & 0xff; if((flag & 1) == 0) { zip_SEND_CODE(lc, ltree); /* send a literal byte */ // Tracecv(isgraph(lc), (stderr," '%c' ", lc));
} else { // Here, lc is the match length - MIN_MATCH
code = zip_length_code[lc]; zip_SEND_CODE(code+zip_LITERALS+1, ltree); // send the length code
extra = zip_extra_lbits[code]; if(extra != 0) { lc -= zip_base_length[code]; zip_send_bits(lc, extra); // send the extra length bits
} dist = zip_d_buf[dx++]; // Here, dist is the match distance - 1
code = zip_D_CODE(dist); // Assert (code < D_CODES, "bad d_code");
zip_SEND_CODE(code, dtree); // send the distance code
extra = zip_extra_dbits[code]; if(extra != 0) { dist -= zip_base_dist[code]; zip_send_bits(dist, extra); // send the extra distance bits
} } // literal or match pair ?
flag >>= 1; } while(lx < zip_last_lit);
zip_SEND_CODE(zip_END_BLOCK, ltree); }
/* ========================================================================== * Send a value on a given number of bits. * IN assertion: length <= 16 and value fits in length bits. */ var zip_Buf_size = 16; // bit size of bi_buf
function zip_send_bits( value, // value to send
length) { // number of bits
/* If not enough room in bi_buf, use (valid) bits from bi_buf and * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid)) * unused bits in value. */ if(zip_bi_valid > zip_Buf_size - length) { zip_bi_buf |= (value << zip_bi_valid); zip_put_short(zip_bi_buf); zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid)); zip_bi_valid += length - zip_Buf_size; } else { zip_bi_buf |= value << zip_bi_valid; zip_bi_valid += length; } }
/* ========================================================================== * Reverse the first len bits of a code, using straightforward code (a faster * method would use a table) * IN assertion: 1 <= len <= 15 */ function zip_bi_reverse( code, // the value to invert
len) { // its bit length
var res = 0; do { res |= code & 1; code >>= 1; res <<= 1; } while(--len > 0); return res >> 1; }
/* ========================================================================== * Write out any remaining bits in an incomplete byte. */ function zip_bi_windup() { if(zip_bi_valid > 8) { zip_put_short(zip_bi_buf); } else if(zip_bi_valid > 0) { zip_put_byte(zip_bi_buf); } zip_bi_buf = 0; zip_bi_valid = 0; }
function zip_qoutbuf() { if(zip_outcnt != 0) { var q, i; q = zip_new_queue(); if(zip_qhead == null) zip_qhead = zip_qtail = q; else zip_qtail = zip_qtail.next = q; q.len = zip_outcnt - zip_outoff; // System.arraycopy(zip_outbuf, zip_outoff, q.ptr, 0, q.len);
for(i = 0; i < q.len; i++) q.ptr[i] = zip_outbuf[zip_outoff + i]; zip_outcnt = zip_outoff = 0; } }
return function deflate(str, level) { var i, j;
zip_deflate_data = str; zip_deflate_pos = 0; if(typeof level == "undefined") level = zip_DEFAULT_LEVEL; zip_deflate_start(level);
var buff = new Array(1024); var aout = []; while((i = zip_deflate_internal(buff, 0, buff.length)) > 0) { var cbuf = new Array(i); for(j = 0; j < i; j++){ cbuf[j] = String.fromCharCode(buff[j]); } aout[aout.length] = cbuf.join(""); } zip_deflate_data = null; // G.C.
return aout.join(""); };
})();
onmessage = function worker(m) { postMessage(deflate(m.data, 9)); };
onconnect = function sharedWorker(e) { var port = e.ports[0]; port.onmessage = function(m) { port.postMessage(deflate(m.data, 9)); }; };
|